Какие существуют системы заземления

Эксплуатация промышленных установок и электрических сетей невозможна без грамотно спроектированной системы заземления, обустроенной с соблюдением требований действующих ПУЭ (смотрите пункт 1.7). С ее помощью удается организовать надежную защиту рабочего персонала и рядовых потребителей от поражения опасными напряжениями и удара током. В зависимости от того, за счет каких средств она обеспечивается и по каким схемам организуется, различают искусственное и естественное заземление. Ко второму типу систем заземления относят расположенные в грунте участки и элементы строительных металлоконструкций и трубопроводов, состоящие из отрезков труб, арматуры и других элементов. К искусственным разновидностям этих сооружений относятся специально созданные человеком заземляющие устройства (ЗУ), по-другому называемые защитными контурами.

В виду ненадежности естественных конструкций, не гарантирующих уверенного стекания аварийного тока в землю согласно правилам ПУЭ для действующих электроустановок обязательно обустройство специальных ЗУ. Только таким путем технический персонал сможет контролировать величину сопротивления растекания тока в грунт, являющуюся основным показателем эффективности заземлителей.

Его точное значение, как правило, определяется текущим состоянием почвы, а также техническими параметрами конструкции и свойствами материалов, которые применяются при ее изготовлении. Определяющим фактором при расчете этой величины является площадь непосредственного соприкосновения с землей входящих в состав конструкции штырей, пластин, а также отрезков труб и подобных им элементов.

Что такое PE и PEN проводники

Согласно ГОСТ Р50571.2-94 года классическая схема заземления содержит в своем составе следующие виды шин, отличающиеся по функциональному назначению:

  • Фазные проводники.
  • Шина N, представляющая собой так называемый «рабочий нуль», служащий для создания токовой цепи нагрузки (другое ее название – нейтраль 3-х фазной сети).
  • PE – специально обустраиваемая защитная нулевая жила, используемая для организации повторного заземления и зануления на приемном (потребительском) конце.
  • PEN – совмещенный проводник, выполняющий функции обеих рассмотренных выше шин.
Цветовое обозначение проводов заземления на схеме
Цветная маркировка проводов на схеме: Ф1-красный, Ф2-желтый и Ф3-зеленый цвета, N – синий, PE – желто-зеленый, а PEN – комбинация двух цветовых окрасок.

Для фазных проводов традиционно применяется трехцветная маркировка: Ф1-красный, Ф2-желтый и Ф3-зеленый цвета. Нейтральные проводники в рабочих схемах также отличаются особым колером (N – синий, PE – желто-зеленый, а PEN – комбинация двух цветовых окрасок).

Дополнительная информация: Каждый из этих проводников подбирается по сечению шины, которое не должно быть менее половины того же показателя для любой фазной жилы.

Умение различать типы нулевых проводов позволит пользователю разобраться в следующих важных вопросах:

  • Как организуются защитные PE, N рабочие и совмещенные PEN проводники?
  • Для каких целей нужен каждый из них?
  • Как делается заземляющий контур на потребительской стороне?

Ответы на эти вопросы приблизят заинтересованного пользователя к пониманию принципа работы схем зануления и заземления. Для тех, кто давно не занимался этой темой, напомним, что под заземлением электросетей и оборудования понимается соединение открытых для случайного прикосновения токопроводящих частей с землей.

Что такое нейтраль

Чтобы понять, чем различные способы заземления отличаются один от другого – важно разобраться с тем, что представляет собой нейтраль, предусмотренная в любой электросети.

Нейтраль трехфазных электрических сетей
Нулевая точка трехфазных электрических сетей: а) заземленная наглухо, б) заземленная через высокоомное сопротивление, в) изолированная от земли

Ее наличие в составе комплекта проводов, обеспечивающих передачу электроэнергии от подстанции к потребителю, объясняется следующими обстоятельствами:

  1. при организации трехфазного энергоснабжения токовые составляющие в каждой из фаз теоретически должны быть равными по величине;
  2. при протекании по обратной ветви, называемой нейтралью, за счет векторного сложения (три фазы, сдвинутые одна относительно другой на 120 градусов) они, по сути, должны взаимно компенсироваться;
  3. в реальности из-за перекоса фаз, вызванного неравномерностью распределения нагрузки, обратная составляющая тока через этот провод постоянно не равна нулю.

Важно! Более того, величина перекоса может достигать значительных величин, что и приводит к необходимости уделять нейтральному проводнику особое внимание.

Его общая толщина в частности, согласно ПУЭ не должна быть менее половины сечения фазных шин. В противном случае из-за значительных по величине токовых нагрузок нередко проявляется такое неприятное явление, как «отгорание нуля». Именно поэтому в нейтральном проводнике не допускается устанавливать защитные приборы, приводящие к его обрыву при срабатывании в случае перегрузок.

TN и ее разновидности

Существующие системы заземления действующих электроустановок классифицируются по следующим основным признакам:

  • Рабочее состояние нейтрали (глухо заземленная или полностью изолированная).
  • Порядок ее проводки на протяжении всего участка прокладки трассы от подстанции с понижающим трансформатором до электроустановки потребителя.
  • Особенности подключения заземляемой нагрузки к нейтрали.

Основным рабочим документом, определяющим деление на виды заземления на территории России, является ПУЭ (в частности – пункт 1.7). В нем приводится описание характерных признаков, по которым принято дифференцировать действующие системы ЗУ. Их сокращенное обозначение построено на основе сочетания первых букв слов «Terre», «Neuter», «Isole», что переводится с французского языка как «земля», «нейтраль» и «изолированная».

Системы заземления TN
Cхемы заземления TN в 3-х различных исполнениях, обозначаемых как TN-C, TN-S, TN-C-S

Значение каждого символа, применяемого при их обозначении, расшифровывается следующим образом:

  • T – означает заземление вообще.
  • N – это значит, что оно подсоединено к нейтрали.
  • I – изолированное состояние шины.
  • C (от начальной буквы слова «common» или общая жила) – информирует о совместной прокладке или объединении функций рабочего плюс защитного проводников.
  • S (от начального значка английского «select») – означает раздельное использование этих же проводов.

В приведенных способах маркировки по последовательности и виду букв можно судить о способе защиты источника тока и особенностях схем защитного заземления, обустраиваемых на потребительской стороне. При организации промышленных электросетей различают схемы заземления TN, TT и IT. Самая первая из них, относящаяся к наиболее распространенным, встречается в 3-х различных исполнениях, обозначаемых как TN-C, TN-S, TN-C-S. Чтобы четко понимать основные различия этих способов обустройства защиты потребуется рассмотреть каждый из предложенных вариантов более подробно.

Важно! Из фрагмента обозначения «N» следует, что для подсоединения нулевых проводников (независимо от их прямого назначения) применяется глухозаземленная нейтраль питающих обмоток понижающего трансформатора.

Также важно помнить о том, что все токопроводящие корпуса и экраны на потребительской стороне подключаются к нулевому проводнику, подсоединенному к этой же нейтрали (другими словами – они надежно заземляются).

Обустроенная таким образом схема имеет следующую характерную особенность: ее «ноль» или шина N подключена к собственному контуру заземления, имеющемуся на трансформаторной станции. Глухозаземленной такая нейтраль называется потому, что между ней и контуром заземления не устанавливается ни дугогасящего реактора, ни других видов защитных средств. Ниже приводится описание различных модификаций TN.

TN-C

Согласно использованному в названии буквенному обозначению, для нее характерно объединение двух проводящих ток шин (вспомним, что «C» – это по-английски common или общий провод). Классическая схема заземления TN-C представляет собой традиционную четырех проводную линию энергоснабжения с тремя фазными и одним нулевым проводником (смотрите фото ниже).

система заземления TN-C
Традиционная четырех проводная линия энергоснабжения с тремя фазными и одним нулевым проводником

Последняя из обозначенных типов шин представлена в данном случае совмещенным электрическим проводником, со стороны подстанции наглухо заземленным на собственный контур. На приемном конце к нему посредством медных шинок подсоединяются все открытые токопроводящие элементы корпусов и металлические части приборов (кроме того, сюда же подключается рабочий ноль). У этой системы имеется целый ряд недостатков, основные из которых перечислены ниже:

  1. возможность потери защитных функций при случайном обрыве или отгорания нейтрали (нулевой жилы), приводящая к угрозе поражения высоким напряжением;
  2. отсутствие в розетках электросетей отдельного проводника, обеспечивающего полноценное заземление (так называемое «расщепление» на щитке специалистами, как правило, в расчет не принимается);
  3. невозможность организации повторного заземления из-за совмещенности защитных и рабочих функций;
  4. как вынужденная мера – необходимость применять схему защитного зануления, то есть соединять корпус оборудования с нулевым проводом.

Дополнительная информация: В последнем случае основным прибором защиты является пороговый элемент (автомат), установленный на стороне потребителя и мгновенно отключающий цепь питания при попадании фазы на корпус.

Высокая скорость срабатывания автоматического выключателя не позволяет опасным токам достичь значений, угрожающих жизни прикоснувшегося к корпусу оборудования человека. Важнейшим ограничением при необходимости организации вынужденной защиты бытовых приборов является запрет на совмещение заземления и уравнивания потенциалов в ванных комнатах квартир. Сегодня эта схема на практике используется крайне редко; она до сих пор сохранилась лишь в строениях, относящихся к категории старого жилья. Кроме того, ее иногда применяют в электрических сетях, предназначенных исключительно для уличного освещения, в которых вероятность поражения опасным потенциалом очень мала.

Заземляющие системы TN-S

Более универсальная и безопасная в плане эксплуатации защитная схема TN-S отличается раздельной прокладкой рабочей и защитной нулевых шин (смотрите фото ниже).

Система заземления TN-S
Более универсальная и безопасная в плане эксплуатации защитная схема TN-S

Она была разработана, а затем внедрена в сетевые структуры действующих электрических подстанций еще в 30-е годы прошедшего века. Одновременно с высоким уровнем безопасности, обеспечиваемым этой системой, данный подход к обустройству защитных цепей имеет один, но очень важный недостаток. Он касается экономической стороны прокладки трасс и связан со значительным расходом кабельного материала (общая длина проводов в этом случае увеличивается вдвое).

Соответственно и издержки на организацию прокладки такой системы заметно возрастают. Еще одним характерным признаком этого способа защиты от поражения электрическим током является увеличение числа проводников, поступающих на вводное распределительное устройство к потребителю.

Обратите внимание: Подача 3-х фазного напряжения в этом случае осуществляется по пяти проводам, а при однофазном питании – по трем (вместо 2-х в системе TN-C).

Для заземления, производимого по методу «наглухо» на стороне источника поставляемой энергии, берется совмещенная нулевая шина. В положениях ГОСТ Р50571 и самой последней (обновленной) версии ПУЭ содержатся рекомендации по обустройству на вновь вводимых объектах системы TN-S, позволяющей обеспечить требуемый уровень безопасности. С другой стороны ее широкому внедрению во все работающие и запускаемые с нуля энергетические комплексы препятствуют высокие затраты на прокладку кабельных изделий по двум параллельным линиям. Кроме того, этому мешают сложившаяся за многие годы традиция и привязанность энергетики нашей страны к четырехпроводным схемам трехфазного питания (два провода на вводе в квартиру).

TN-C-S

В качестве промежуточного варианта, вобравшего в себя положительные стороны обеих рассмотренных систем, была разработана еще одна схема, отличающаяся следующими особенностями:

  1. для оптимизации расходуемых на ее обустройство средств начальный участок трассы прокладывается в виде совмещенного проводника, а оставшаяся ее часть изготавливается в полностью раздельном виде (как TN-S);
  2. такое разбиение позволяет получить вполне пригодную к эксплуатации систему, не требующую значительных расходов и по безопасности не уступающую второму (раздельному) варианту;
  3. разбиение на два проводника (защитную и нулевую шину) на вводе к потребителю позволяет обособить их функционально именно на этом не очень длинном участке;
  4. благодаря такому приему удается совместить возможность получения полноценного вертикального заземления и сэкономить на прокладываемых проводах;
  5. вертикальное заземление – это вбитые в землю металлические штыри, соединенные на сварку стальными перемычками (последние условно относят к горизонтальным элементам контура).

Обратите внимание: В этом случае на вводе в квартиру и к розеткам в жилых помещениях подводятся три жилы вместо двух, применяемых в системе TN-C.

Их наличие позволяет в частном доме организовать полноценное и надежное повторное заземление.

Система TN-C-S
Промежуточный вариант, вобравший в себя положительные стороны рассмотренных систем TN-C и TN-S

При сравнении систем заземления TN-C-S и TN-S необходимо отметить следующие их различия:

  1. у первой из них имеются существенные недостатки, схожие с теми же минусами, что и у полностью совмещенной схемы прокладки нулевых проводников;
  2. они состоят в том, что при случайном повреждении или отгорании провода PEN на участке от трансформаторной подстанции до места расщепления все обслуживаемое оборудование останется без защиты и нуля;
  3. во-вторых, в этом случае по аналогии с первым вариантом, нельзя воспользоваться занулением схемы которое нередко применяется для защиты человека и электрических установок;
  4. в системе TN-S по понятным причинам этого случиться не может, поскольку вся рабочая токовая нагрузка приходится на соответствующий провод N, проложенный отдельно от защитной шины PE.

По этой причине при разработке и внедрении системы TN-C-S действующими нормативными актами предписываются особые меры защиты совмещенного PEN провода от непреднамеренного повреждения.

Заземляющие системы TT и IT

Схемы заземления TT и IT
Схемы заземляющих систем TT и IT

Схема ТТ

Заземление TT применяется в тех исключительных случаях, когда обеспечить надежную защиту с применением системы TN-C-S не представляется возможным или связано со значительными затруднениями. Это в основном касается удаленных от городских центров территорий, обычно относящихся к отдаленным сельским местностям и регионам. В этих условиях все чаще применяются системы заземления TT, в которых предусматривается «глухое» соединение нейтрали трансформатора с землей с последующей передачей 3-х фазного напряжения с использованием четырехпроводной линии.

Дополнительная информация: Четвертой шиной в этом случае является так называемый «функциональный» или рабочий нуль N (он же – нейтральный провод).

На стороне, где располагаются нагрузки, как правило, обустраивается уже не повторное, а местное заземление вертикально-штыревого типа. К нему подключаются все медные шины-проводники PE, подсоединяемые с другой стороны к корпусу электрооборудования.

Система заземления TT
Четырехпроводная система заземления TT

Эта система официально разрешена к применению на территории России совсем не так давно. Несмотря на это она быстро «прижилась» в различных условиях эксплуатации энергосистем и широко используется в сельских районах, удаленных от городских центров на значительные расстояния. В пределах городской черты схема заземления типа TT нередко применяется при обеспечении электричеством различных торговых точек и небольших временных построек, связанных с оказанием бытовых услуг.

Дополнительная информация: Помимо этого, эти системы часто используются при электроснабжении бытовок и строительных вагончиков, временно устанавливаемых в границах возводимых объектов.

При этом подходе к организации систем защитного заземления должны выполняться особые требования. Они касаются вопроса установки в обслуживаемые цепи приборов и устройств защитного отключения (УЗО), а также специальных молниеотводов с функцией защиты от грозы.

Схемы IT

Во всех рассмотренных ранее системах нейтраль наглухо связана с землей, что превращает их в универсальные и надежные средства защиты. Вместе с тем они не лишены серьезных недостатков, описанных при анализе, проведенном в соответствующих разделах. Более высокий уровень безопасности гарантируют системы, в которых используется никак не связанный с землей нейтральный провод.

Система заземления IT
Системы заземления IT – это классический вариант изолированного от земли включения кабельных линий, не имеющий аналогов по степени гарантируемой им безопасности

Обратите внимание: К этому же случаю относится вариант включения в заземляющую цепь приборов защиты с большим внутренним сопротивлением (низкая проводимость равнозначна обрыву).

Такое включение без нейтрали характерно для схем, обозначаемых как IT. Отсутствие факторов, приводящих к отключению энергоснабжения и потере системой защитных функций, позволяет применять их на следующих объектах:

  1. во взрывоопасных зонах;
  2. в отделениях медицинских учреждений с установленным в них специальным оборудованием, предназначенным для сохранения жизни пациентов и больных;
  3. на профильных предприятиях, занимающихся нефтепереработкой и газодобычей;
  4. во всех отраслях энергетики, а также в научных лабораториях, оснащенных особо чувствительным оборудованием;
  5. на других, не поддающихся учету объектах, связанных с вопросами обороны, в частности.

Системы заземления IT – это классический вариант изолированного от земли включения кабельных линий, не имеющий аналогов по степени гарантируемой им безопасности. Его основные характеристики – это изолированное состояние нейтрали трансформатора – «I» и наличие на приемной стороне собственного контура заземления («Т»). Напряжение к потребителю поступает в этом случае по ограниченному количеству шин, а все проводящие ток части оборудования надежно подсоединяются к местному заземляющему устройству (ЗУ).

Важно! Нулевой рабочий провод, обозначаемый на схемах как N, на участке от трансформаторной подстанции до оборудования потребителя в схеме IT отсутствует.

Рассмотренный способ организации защиты только подтверждает правило, гласящее, что надежное заземление является гарантией эксплуатационной безопасности (включая сохранение жизни человека).

В заключительной части обзора отметим, что все рассмотренные системы касаются организации защиты в электроустановках до 1 кВ в зависимости от способа прокладки нулевого провода. Имеющиеся при этом отличия касаются только отдельных деталей обустраиваемых сетей. В общем они предназначаются для следующих важных целей:

  • Обеспечение не только надежного во всех отношениях, но и безопасного в повседневной эксплуатации функционирования электрооборудования, подключенного на потребительской стороне.
  • Снижение вероятности случайного поражения током работающего на нем персонала и людей, пользующихся этими электроустановками.
Рейтинг
( Пока оценок нет )
Главный редактор, автор статей. Опыт работы по ремонту и монтажу электрических систем более 30-ти лет.
Фишки Электрика
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector